|
[Contents][Appendix 4]
[Section 10][Section 12]
E is for Ecstasy by Nicholas Saunders
Appendix 4: Bibliography
Analytical methods
- Anon: Analytical Profiles of Substituted 3,4-Methylenedioxyamphetamines:
Designer Drugs Related to MDA. Published by CND Analytical, Auburn,
Alabama. 109 p. (1988).
- An atlas of spectra, chromatographic behaviour, outlines of chemical
preparations, and a brief history of MDA, and over a score of its
homologues, is presented. Spectra of the usual synthetic precursors are
also given. MDMA is represented with its UV, IR (both salt and base), MS,
and HPLC characteristics.
- Andrey, R.E. and Moffat, A.C. Gas-Liquid Chromatographic Retention Indices
of 1318 Substances of Toxicological Interest on SE-30 or OV-1 Stationary
Phase. J. Chromatog. 220 195-252 (1981).
- The GC characteristics of many abuse drugs are presented in a review
format. MDMA is included without experimental detail.
- Bailey, K., By, A.W., Legault, D. and Verner, D. Identification of the
N-Methylated Analogs of the Hallucinogenic Amphetamines and Some Isomers.
J.A.O.A.C. 58 62-69 (1975).
- MDMA and four analogous methamphetamine derivatives (corresponding to 2-,
3-, and 4-methoxyamphetamine (MA) and
3-methoxy-4,5-methylenedioxyamphetamine (MMDA)) were synthesized and
spectroscopically characterized. The synthesis was from the corresponding
phenylacetone through the Leuckart reaction with N-methylformamide. The
reported m.p. (of the hydrochloride salt) is 147-8 degrees C. The U.V., NMR, IR
and mass spectral data are presented. Rf values (five systems) and GC
retention times (four systems) are also given.
- Churchill, K.T. Identification of 3,4-Methylenedioxymethamphetamine.
Microgram 18 123-132 (1985).
- An analytical profile, through spectrographic tools such as UV, TLC, GC,
NMR, MS, is presented for a sample of MDMA seized in Georgia. Comparisons
with MDA are presented.
- Clark, C.R., Noggle, F.T. and De Ruiter, J. Liquid Chromatographic and Mass
Spectal Analysis of N,N-disubstituted 3,4-Methylenedioxyamphetamines. J.
Liq. Chrom. 13 263- 274 (1990).
- The preparation of the N-methyl-N-ethyl, the N-methyl-N-propyl, and the
N-methyl-N-isopropyl homologues of MDMA is described, but no physical
properties are given. The route involves the reductive methylation of the
appropriate preformed N-alkyl MDA homologues. Chromatographic properties,
and some mass spectroscopic data, are presented.
- Clark, C.R., DeRuiter, J. and Noggle, F.T. GC-MS Identification of
Amine-Solvent Condensation Products Formed During Analysis of Drugs of
Abuse. J. Chrom. Sci. 30 399-404 (1992).
- It is reported that during the GC-MS analysis of methanol solutions of
primary amines such as MDA, amphetamine and phenethylamine, there is the
formation of a small amount of the Schiff base product between the amine
and formaldehyde. This product co-elutes, and is not the
tetrahydroisoquinoline. Methanol solutions of MDMA result in detectable
methylation, with the formation of N,N-dimethyl-MDA.
- Clark, C.R., Valaer, A.K., DeRuiter, J. and Noggle, F.T. Synthesis,
Stability and Analytical Profiles of 3,4-Methylenedioxyamphetamines:
Derivatives of "Ecstasy"(MDMA). J. Alabama Acad. Sci. 64 34-48 (1993).
- A number of the known homologues of MDMA were prepared to study their
properties for eventual analytical purposes. The tools used were GCMS and
HPLC using a reversed phase system.
- Cody, J.T and Schwartzhoff, R. Fluorescence Polarizatrion Immunoassay
Detection of Amphetamine, Methamphetamine, and Illicit Amphetamine
Analogues. J. Anal. Toxicol. 17 26-30 (1993).
- The Abbott Diagnostic Amphetamine/Methamphetamine II and Amphetamine Class
Reagents were evaluated on the Abbott TDx for cross-reactivity to
amphetamine and methamphetamine sterioisomers, several of their
metabolites, and various illicit drugs. MDA, MDMA, MDE, as well as
4-hydroxymethamphetamine showed a cross-reactivity that would allow this
procedure to be used as a screening tool.
- Cody, J.T. Cross-Reactivity of Amphetamine Analogues with Roche Abuscreen
Radioimmunoassay Reagents, J. Anal. Tox. 14 50-53 (1990).
- Some 15 variously substituted amphetamine and phenethylamine derivatives,
with and without N-substituents, were screened at various concentrations
using the Roche Abuscreen Radioimmunoassay for amphetamines. Using
amphetamine as a standard, only MDA was found to cross-react. All other
compounds were negative, even at the highest concentrations. These included
MDMA, MDE, MDOH, N,N-dimethyl-MDA, 2-MA, 4-hydroxyamphetamine, 2,5-DMA,
TMA, methamphetamine, DOM, DOET, DOB, 2C-B and mescaline.
- Cody, J.T. Detection of D,L-Amphetamine, D,L-Methamphetamine, and Illicit
Amphetamine Analogs Using Diagnostic Products Corporation's Amphetamine and
Methamphetamine Radioimmunoassay. J. Anal. Tox. 14 321-324 (1990).
- The commercial radioimmune assay procedures for amphetamine and
methamphetamine were evaluated for a number of illicit drugs with the
amphetamine backbone. MDA and MDMA gave substantial cross reactivity with
both kits, but most of the others (DOM, mescaline, DOET. 2C-B, DOB, TMA)
did not.
- Dal Cason, T. The Characterization of Some
3,4-Methylenedioxyphenylisopropylamine (MDA) Analogs. J. Forensic Sci. 34
28-961 (1989).
- The synthesis and complete spectroscopic identification of several
N-alkylated homologues of MDA are presented. The compounds include MDA (and
its acetyl derivative), MDMA, MDE, MDPR, MDIP, MDOH (and its acetyl
derivative), MDDM, and the acetyl derivative of the oxime of MDP-2-P.
Included are melting points, as well as GCMS, NMR, IR and HPLC details.
- DeRuiter, J., Clark, C.R. and Noggle Jr., F.T. Liquid Chromatographic and
Mass Spectral Analysis of 1-(3,4-Methylenedioxyphenyl)-1-propanamines:
Regioisomers of the 3,4- Methylenedioxyamphetamines. J. Chrom. Sci., 28
129-132 (1990).
- The chromatographic and spectroscopic properties, but not the synthetic
details, are given for a series of alpha-ethyl benzylamines isomeric with
MDA. The N-H, methyl, dimethyl, ethyl, propyl and isopropyl homologues are
discussed.
- Eichmeier, L.S. and Caplis, M.E. The Forensic Chemist; An "Analytic
Detective." Anal. Chem. 47 841A-844A (1975).
- An analytical anecdote is presented showing the logical procedure used to
distinguish MDMA from closely related drugs such as MDA in a seized sample.
MDMA was acknowledged to be similar to MDA but, whereas MDA is a controlled
substance, MDMA is exempt (sic) from Federal control.
- Fitzgerald, R.L., Blamke, R.V., Glennon, R.A., Yousif, M.Y., Rosecrans,
J.A. and Poklis, A. Determination of 3,4-Methylenedioxyamphetamine and
3,4-Methylenedioxymethamphetamine Enantiomers in Whole Blood. J. Chrom. 490
59-69 (1989).
- Extracts of whole blood containing added MDA or MDMA were derivatized with
N-trifluoroacetyl-L-prolyl chloride. The resulting diastereoisomers were
separated by GC, allowing a sensitivity of analysis in the nanogram range.
- Gan, B.K., Baugh, D., Liu, R.H. and Walia, A.S. Simultaneous Analysis of
Amphetamine, Methamphetamine, and 3,4-Methylenedioxymethamphetamine (MDMA)
in Urine Samples by Solid-phase Extraction, Derivatization, and Gas
Chromatography/Mass Spectrometry. J. For. Sci. 36 1331 (1991).
- A method is described in which the extracts of urine are derivatized with
trifluoroacetic anhydride. Deuterated amphetamine and methamphetamine were
used as internal standards.
- Gough, T.A. and Baker, P.B. Identifiction of Major Drugs of Abuse Using
Chromatography. J. Chromatog. Sci. 20 289-329 (1982).
- An extensive review of the analytical identification of many abuse drugs is
abstracted. MDMA is mentioned as one of these. There is no new experimental
information presented.
- Gupta, R.C. and Lundberg, G.D. Application of Gas Chromatography to Street
Drug Analysis. Clin. Tox. 11 437-442 (1977).
- A gas chromatography screening procedure is described, in which the
retention times of over 100 drugs are compared to those of methapyriline or
codeine. MDMA is amongst them.
- Hansson, R.C. Clandestine Laboratories. Production of MDMA
3,4-Methylenedioxymethamphetamine. Analog. 9 1-10 (1987).
- A compilation of forensic information pertaining to MDMA is presented,
including spectra (UV, MS, IR), synthetic approaches, and observations from
clandestine laboratory operations (seen in Australia).
- Hearn, W.L., Hime, G. and Andollo, W. Recognizing Ecstasy: Adam and Eve,
the MDA Derivatives - Analytical Profiles. Abstracts of the CAT/SOFT
Meetings, Oct. 29 - Nov. 1, 1986, Reno/Lake Tahoe, Nevada, USA.
- A study is reported comparing MDA, MDMA and MDE in the EMIT
immunoanalytical assay system that is designed for amphetamine. Even though
they are all of decreased reactivity, there is cross-reactivity and they
may be picked up as positives. Using the bottom limit cut-off of 300
nanograms/mL for amphetamine there would be a response from as little as
10-15 mg/mL of MDMA. This is a value that might be encountered in the early
stages of MDMA use.
- Helmlin, H., and Brenneisen, R. Determination of Psychotropic
Phenylalkylamine Derivatives in Biological Matrices by High-Performance
Liquid Chromatography with Photodiode-Array Detection. J. Chromatog. 593
87-94 (1992)
- An HPCL analysis procedure was described for the analysis of MDMA and MDA
in human urine. Six hours following the administration of a 1.7 mg/kg
dosage to several patients, urine concentrations ranged from 1.48 to 5.05
ug/ml. The major metabolite, MDA, showed concentrations ranging from 0.07
to 0.90 ug/ml. A separate study of the cactus Trichocereus patchanol showed
a mescaline content of from 1.09 to 23.75 ug/ml
- Helmlin, H-J. and Brenneisen, R. Determination of Psychotropic
Phenylalkylamine Derivatives in Biological Matrices by High-performance
Liquid Chromatography with Photodiode-array Detection. J. Chrom. 593 87-94
(1992).
- An HPLC analytical scheme has been developed for the characterization and
potential quantitative measurement of some fifteen phenethylamine drugs of
forensic interest. Of specific clinical interest was the urine analyses of
several patients following the administration of 1.7 mg/Kg of MDMA. These
values, from samples collected about six hours following drug
administration, showed a range of 1.48 - 5.05 ug/mL for MDMA, and 0.07 -
0.90 ug/mL for the metabolite, MDA.
- Helmlin, H. -J., Bracher, K., Salamone, S.J. and Brenneisen, R., Analysis
of 3,4-Methylenedioxymethamphetamine (MDMA) and its Metabolites in Human
Plasma and Urine by HPLC-DAD, GC-MS and Abuscreen-Online. Abstracts from
CAT/SOFT Joint Meeting, October 10-16, 1993, Phoenix, Arizona.
- Urine and plasma samples were taken from a number of patients being
administered 1.5 mg/Kg MDMA for psychotherapy research purposes. Maximum
plasma levels (300 ng/mL) were seen at 140 minutes. The main urinary
metabolites were 4-hydroxy-3-methoxymethamphetamine and
3,4-dihydroxymethamphetamine, both excreted in conjugated form. The two
N-demethylated homologues of these compounds were present as minor
metabolites. The cross-reactivity of the Abuscreen immunoassay for both
the metabolites (including MDA, another metabolite) and the parent drug
were determined.
- Holsten, D.W. and Schieser, D.W. Controls over the Manufacture of MDMA. J.
Psychoactive Drugs 18 371-2 (1986).
- A strong argument is made for attending to the quality of manufacture, and
the basic concepts of ethical principles in the exploring of drugs that
have not been evaluated against the usual pharmaceutical standards.
Government interference in such studies becomes necessary, to safeguard the
public.
- Julian, E.A. Microcrystalline Identification of Drugs of Abuse: The
Psychedelic Amphetamine. J. Forensic Sciences 35 821-830 (1990).
- The diliturate salts (5-nitrobarbituric acid salts) of several psychedelic
amphetamines have been made and observed. The amines were PA, MDA MMDA (1,
not 2 as implied), DOM, DOB, TMA, Mescaline, MDMA and MDEA. Photographs of
the crystals are shown.
- Kunsman, G.W., Manno, J.E., Cockerham, K.R. and Manno, B.R. Application of
the Syva EMIT and Abbott TDx Amphetamine Immuniassays to the Detection of
3,4-Methylenedioxmethamphetamine (MDMA) and
3,4-Methylenedioxyethamphetamine (MDEA) in Urine. J. Anal. Tox. 14 149-153
(1990).
- Two popular immunological drug assays, designed for the determination of
amphetamine, have been applied to urines that had been spiked with varying
amounts of MDMA and MDE. The EMIT assay was insensitive except at the
highest level, but there was considerable cross-reactivity with the
fluorescent polarization assay.
- Lim, H.K., Su, Z. and Foltz, R.L. Stereoselective Disposition:
Enantioselective Quantitation of 3,4-(Methylenedioxy)Methamphetamine and
Three of its Metabolites by Gas Chromatography/Electron Capture Negative
Ion Chemical Ionization Mass Spectrometry. Biol. Mass Spect. 22 403-11
(1993).
- A sensitive assay for MDMA and three of its metabolites has been developed.
It recognizes the optical activity of the chiral centers, and has been
used to determine the degree of asymmetric metabolism of racemic MDMA in
both rats and mice.
- Lim, H.K., Zeng, S., Chei, D.M. and Flotz, R.L. Comparitive Investigation
of Disposition of 3,4-(Methylenedioxy)methamphetamine (MDMA) in the Rat and
the Mouse by a Capillary Gas Chromatography-Mass Spectrometry Assay Based
on Perfluorotributylamine-enhanced Ammonia Positive Ion Chemical Ionization
. J. Pharmaceut. Biomed. Anal. 10 657-665 (1992).
An assay is described that allows a quantitative measure of MDMA and three
- of its primary metabolites, methylenedioxamphetamine,
4-hydroxy-3-methoxymethamphetamine and 4-hydroxy-3-methoxyamphetamine. The
latter two metabolites were excreted mainly as the glucuronide and sulfate
conjugates. The metabolic patterns of the rat and the mouse are compared.
- Michel, R.E., Rege, A.B. and George, W.J. High-Pressure Liquid
Chromatography / Electrochemical Detection Method for Monitoring MDA and
MDMA in Whole Blood and Other Biological Tissues. J. Neurosci. Methods 50
61-66 (1993).
- An method is described for the analysis of MDMA and MDA in biological
samples. It claims a high sensitivity and a short turn-around time. MDE
is used as an internal standard. Spiked blood samples, rather than actual
clinical specimens, were used.
- Noggle, F.T., Clark, C.R. and DeRuiter, J. Liquid Chromatographic and
Spectral Methods for the Differentiation of
3,4-Methylenedioxymethamphetamine (MDMA) from Regioisomeric
Phenethylamines. J. Liq. Chromatog. 14 913-1928 (1991).
- Three isomers of MDMA, with the changes restricted to the alpha-carbon and
the nitrogen substituents, have been synthesized. These are the two
phenethylamines N-ethyl and N,N-dimethyl-3,4-methylenedioxyphenethylamine,
and 1-(3,4-methylenedioxyphenyl-2-aminobutane (BDB). Although their mass
spectra are quite similar, they can be distinguished from one-another by
HPLC.
- Noggle, F.T., Clark, C.R. and DeRuiter, J. Liquid Chromatorgraphic and Mass
Spectral Analysis of 1-(3,4-Methylenedioxyphenyl)-3-Butanamines, Homologues
of 3,4-Methylenedioxyamphetamines. J. Chrom. Sci. 27 240-243 (1989).
- The HPLC and GC properties of several homologues of MDA and MDMA are
reported employing the homologous ketone
3,4-methylenedioxyphenyl-3-butanone are studied. These include the primary
amine, and the N-methyl, ethyl, dimethyl, (n)-propyl and (i)-propyl
homologues. The N-hydroxy was made, but its possible thermal instability
was not discussed.
- Noggle Jr., F.T., Clark, C.R. and DeRuiter, J. Identification of Safrole
and Bromosafrole in Samples from the Clandestine Synthesis of MDMA from
Sassafras Oil. Microgram 24 7-13 (1991).
- An analysis of seized samples from an illicit MDMA laboratory showed one to
be sassafras oil that contained safrole by GCMS. The other appeared to be
the result of the addition of hydrobromic acid to safrole to produce two
"bromosafroles." Addition of methylamine to this material produced some
MDMA.
- Noggle Jr., F.T., Clark, C.R. and DeRuiter, J. Gas Chromatographic and Mass
Spectrometric Analysis of Samples from a Clandestine Laboratory Involved in
the Synthesis of Ecstasy from Sassafras Oil. J. Chrom. Sci. 29 168-173
(1991).
- Samples from a clandestine laboratory gave, on GC-MS analysis, evidence for
the intended synthesis of MDMA from the oil of sassafras. The natural
component safrole gave, with the addition of HBr, the 2-bromopropane
intermediate which, on treatment with methylamine, gave MDMA.
- Noggle Jr., F.T., DeRuiter, J. and Long, M.J. Spectrophotometric and Liquid
Chromatographic Identification of 3,4-Methylenedioxyphenylisopropylamine
and its N-Methyl and N-Ethyl Homologues are presented. J. A. O. A. C. 69
681-686 (1986).
- A synthesis of MDEA (the N-ethyl homolog of MDA) is reported, and the
infra-red spectra of the free bases, the hydrochloride salts, and the
phenylisothiocyanate adducts are recorded, as is the HPLC retention
behaviour for both the bases and these derivatives.
- Noggle Jr., F.T., Clark, C.R., Andurkar, S. and DeRuiter, J. Methods for
the Analysis of 1-(3,4-Methylenedioxyphenyl)-2-Butanamine and
N-Methyl-1-(3,4-Methylenedioxyphenyl)-2- Propanamine (MDMA). J. Chrom. Sci.
29 103-106 (1991).
- The infra-red and mass spectra, and the GC and HPLC retention times, of
these two known compounds, are given.
- Noggle Jr., F.T., Clark, C.R., Bouhadir, K.H. and DeRuiter, J. Liquid
Chromatographic and Mass Spectral Analysis of
1-(3,4-Methylenedioxyphenyl)-3-propanamines: Regioisomers of MDMA. J.
Chrom. Sci. 29 78-82 (1991).
- A series of N-substituted homologues of
methylenedioxyphenyl-(n)-propylamine was prepared, and described by
chromatographic and spectroscopic means. No melting points or other
synthetic analytical detail was given.
- Noggle, F.T., Clark, C.R., Pitts-Monk, P. and De Ruiter, J. Liquid
Chromatographic and Mass Spectral Analysis of
1-(3,4-Dimethoxyphenyl)-2-propanamines: Analogs of MDMA. J. Chrom. Sci. 29
253-257 (1991).
- A number of 3,4-dimethoxy counterparts of MDMA and its homologues have been
prepared and analysed by HPLC. Described are 3,4-dimethoxyamphetamine, the
N-methyl, the N- ethyl, and the N,N-dimethyl homologues.
- Noggle Jr., R.T., Clark, C.R., Valaer, A.K. and DeRuiter, J. Liquid
Chromatographic and Mass Spectral Analysis of N-Substituted Analogues of
3,4-Methylenedioxyamphetamine. J. Chromatog. Sci. 26 410 (1988).
- Several spectral properties, and the HPLC separation characteristics of
MDMA and several of its homologues and analogues (MDE, MDPR, DMMA and MDOH)
are described.
- Noggle Jr., F.T., DeRuiter, J., McMillian, C.L. and Clark, C.R. Liquid
Chromatographic Analysis of some N-Alkyl-3,4-Methylenedioxyamphetamines. J.
Liq. Chromatog. 10 2497-2504 (1987).
- The HPLC separation characteristics of MDA, MDMA, MDE and MDDM
(N,N-dimethyl-MDA) are reported on a reversed phase column.
- Noggle Jr., F.T., Clark, C. R. and DeRuiter, J. Gas Chromatographic and
Mass Spectrometric Analysis of N-Methyl-1-aryl-2-propanamines Synthesized
from the Substituted Allylbenzenes Present in Sassafras Oil. J. Chrom.
Sci. 20 267-271 (1991).
- The several allylaromatic essential oils in Sassafras have been studied in
the regeospecific addition of HBr to form the beta-bromopropane. The
bromine atom was subsequently displace with methylamine to form the
corresponding methamphetamine. Safrole gives rise to MDMA.
- O'Brian, B.A., Bonicamp, J.M. and Jones, D.W., Differentiation of
Amphetamine and its Major Hallucinogen Derivatives using Thinlayer
Chromatography. J. Anal. Tox. 6 143-147 (1982).
- Two thin-layer chromatographic systems, and several procedures for
detection, are described for MDMA and 18 analogues. The retention times and
the visualization colour changes are compared and described. Detection
limits in urine were determined from artificially spiked samples. The
reference sample of MDMA was synthesized from MDA by methylation with
methyl iodide, and separation from the co-generated dimethyl and
trimethylammonium homologues by liquid- liquid extraction and preparative
TLC.
- Poklis, A., Fitzgerald, R.L., Hall, K.V. and Saady, J.J. Emit-d.a.u.
Monoclonal Amphetamine / Methamphetamine Assay. II. Detection of
Methylenedioxyamphetamine (MDA) and Methylenedioxymethamphetamine (MDMA).
For. Sci. Intern. 59 63-70 (1993)
- MDA and MDMA have been found to be cross-reactive in both the monoclonal
and the polyclonal immunological EMIT assay. The former was much more
sensitive, presumably sufficiently so for the detection of these drugs in
urine following clinical intoxication.
- Ramos, J.M., Johnson, S. and Poklis, A. MDMA and MDA Cross Reactivity
Observed with Abbott TDx Amphetamine/Methamphetamine Reagents. Clin. Chem.
34 991 (1988).
- A study of the cross-reactivity of MDMA and MDA with the Abbott TDx
fluorescent polarization immuno assay showed that these two drugs gave
positive tests for amphetamine and methamphetamine at levels that were
clinically relevant. This expands the utility of this screening procedure,
but also demands additional care in the interpretation of positive results
that are obtained clinically.
- Renton, R.J., Cowie, J.S. and Oon, M.C. A Study of the Precursors,
Intermediates and Reaction By-Products on the Synthesis of
3,4-Methylenedioxymethylamphetamine and its Application to Forensic Drug
Analysis. Foren. Sci. Intern. 60 189-202 (1993).
- MDMA was prepared by three separate synthetic routes, and the trace
byproducts and impurities were identified and presented in a way that
probable synthetic method could be deduced for legal purposes.
- Ruangyuttikarn, W. and Moody, D.E. Comparison of Three Commercial
Amphetamine Immunoassays for Detection of Methamphetamine,
Methylenedioxyamphetamine, Methylenedioxymethamphetmaine, and
Methylenedioxyethylamphetamine. J. Anal. Toxicol. 12 229-233 (1988).
- Three commercial immunoassays for the detection of amphetamine in urine
(Abuscreen, a radioimmune assay, RIA; EMIT, a homogeneous enzyme immuno
assay procedure; and TDx, a fluorescent polarization immuno assay, FPIA)
have been assayed for their responses to methamphetamine, MDA, MDMA, and
MDE. Some cross-reactivity to amphetamine is seen with all compounds, but
the response is extremely variable depending upon the assay employed.
- Ruybal, R. Microcrystalline Test for MDMA. Microgram 19 79-80 (1986).
- MDMA gives a sensitive microcrystalline test with gold chloride. The
crystal form is similar to that of methamphetamine.
- Shaw, M.A. and Peel, H.W. Thin-layer Chromatography of
3,4-methylenedioxyamphetamine, 3,4-Methylenedioxymethamphetamine and other
Phenethylamine Derivatives. J. Chromatog. 104 201-204 (1975).
- A broad study is presented on the TLC analyses of many phenethylamines. The
compound specifically named in the title, 3,4-methylenedioxymethamphetamine
(MDMA), was a misprint that was subsequently corrected to the intended
compound, MMDA. MDMA was not a part of this study.
- Simpson, B.J., Simpson, T.P. and Lui, R.H. Microcrystalline Differentiation
of 3,4-Methylenedioxyamphetamine and Related Compounds. J. Forensic
Sciences 36 908 (1991).
- Crystal gold salts can distinguish between MDA, mescaline, and DOET,
whereas MDMA and MDE form crystals similar to one another and are not
easily distinguished. DOM and N-hydroxy-MDA compounds were soluble in the
gold chloride reagents and formed no crystals.
- Sutherland, G.J. 3,4-Methylenedioxymethamphetamine (MDMA) A Basis for
Quantitation by UV Spectrophotometry. Analog 10 1-3 (1988).
- Due to the absence of reference samples of MDMA (in Australia) a seized
sample has been evaluated and provides a basis for quantitation employing
UV.
- Tedeschi, L., Frison, G., Castagna, F., Giorgetti, R. and Ferrara, S.D.
Simultaneous Identification of Amphetamine and its Derivatives in Urine
Using HPLC-UV. Intern. J. Legal Med. 105 265-9 (1993).
- Four compounds are rapidly extracted from urine, derivatized with sodium
1,2-naphthaquinone-4-sulfonate, and separated from one-another by HPLC on
an ion-pair reversed phase system, using a detector at 480 nm. The
compounds were amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine
(MDA) and 3,4-methylenedioxymethamphetamine (MDMA).
- Verweij, A. Clandestine Manufacture of 3,4-Methylenedioxymethylamphetamine
(MDMA) by low pressure Reductive Amination. A Mass Sectrometric Study of
some Reaction Mixtures. Forensic Science International, 45 91-96 (1990)
- An analysis by GCMD has been made of the contaminants present in illicitly
synthesized MDMA. Most of them are ascribed to impurities in the starting
piperonyl acetone (piperonal, safrole, isosafrole) or in the starting
methylamine (ammonia, dimethylamine, methylethylamine).
- Verweij, A.M. Contamination of Illegal Amphetamine. Hydrastatinine as a
Contaminant in 3,4-(Methylenedioxy)methylamphetamine. Arch. Krim. 188 54-7
(1991).
The presence of hydrastatinine has been reported in the analysis of
- illicitly prepared MDMA. This extraordinary chemistry might involve the
generation of a phenylacetaldehyde as an intermediate in the oxidation
processes involving the conversion of the starting material, safrole.
Structural identification depended on the comparisons of mass spectra.
- Verweij, A.M.A. and Sprong, A.G.A. A Note About some Impurities in
Commercially Available Piperonylmethylketone. Microgram 26 209-213 (1993).
- An extensive collection of compounds, structures and IR spectra of
impurities in commercial piperonylmethylketone (a precursor to MDMA) is
carefully reproduced, to allow a determination to be made of the method of
synthesis. The actual source of the precursor ketone that was studied
here, however, was apparently not known, so no immediate application of
this origin fingerprinting is obvious.
- Yamauchi, T. The Analysis of Stimulant-analogue Compounds
(3,4-Methylenedioxymethamphetamine Hydrochloride). Kagaku Keisatsu
Kenkyusho Hokoku, Hokagaku Hen. 39 23 (1986).
- People from abroad have provided samples of drugs that had been heretofore
unidentified in Japan. An analytical profile of one such drug, MDMA, is
provided employing most modern spectroscopic tools.
[Contents][Appendix 4]
[Section 10][Section 12]
E is for Ecstasy by Nicholas Saunders (contact@ecstasy.org)
HTMLized by Lamont Granquist (lamontg@u.washington.edu)
|